Name Period	
Name Period	

STOICHIOMETRY WORKSHEET (MOLE-MOLE)

1. Magnesium reacts with hydrochloric acid according to the following balanced chemical equation:

 $Mg(s) + 2 HCI(aq) \rightarrow MgCl_2(aq) + H_2(g)$

If two moles of hydrochloric acid react with excess magnesium, how many moles of hydrogen gas will be produced?

2. Aluminum reacts with HCl to produce aluminum chloride and hydrogen gas. Write a balanced equation for the reaction and calculate the number of moles of HCl required to react with 0.87 moles of Al.

3. Glucose ($C_6H_{12}O_6$) combines with O_2 in the body to produce carbon dioxide and water. Write a balanced equation for this reaction. How many moles of O_2 are required to combine with 0.25 moles of glucose? How many moles of CO_2 and CO_2 and CO_3 would be produced in this reaction?

- 4. Calcium carbonate combines with HCl to produce calcium chloride, water, and carbon dioxide gas. Write the balanced equation for this reaction. How many moles of HCl are required to react with 2.5 moles of calcium carbonate? How many moles of carbon dioxide would be produced?
- 5. Zinc reacts with sulfuric acid (H₂SO₄) to yield zinc sulfate and hydrogen gas. How many moles of hydrogen will be produced if 0.36 moles of zinc react with an equal amount of H₂SO₄?

"Mole to Mole" Stoichiometry Problems

- 1) $\underline{4}$ FeCr₂O₇ + $\underline{8}$ K₂CO₃ + $\underline{1}$ O₂ $\rightarrow \underline{2}$ Fe₂O₃ + $\underline{8}$ K₂CrO₄ + $\underline{8}$ CO₂
- (a) How many moles of FeCr₂O₇ are required to produce 44 moles of CO₂?
- (b) How many moles of O_2 are required to produce 107.9 moles of Fe_2O_3 ?
- (c) If 309 moles of $FeCr_2O_7$ react, how many moles of O_2 will be consumed?
- 2) Given the reaction $S + O_2 \rightarrow SO_2$
- (a) How many moles of sulfur must be burned to give 0.567 moles of SO₂?
- (b) How many moles of SO_2 can be produced from 67.1 moles of O_2 ?
- 3) 6 NaOH + 2 Al \rightarrow 2 Na₃AlO₃ + 3 H₂
- (a) How many moles of aluminum are required to produce 4 moles of hydrogen?
- (b) How many moles of Na₃AlO₃ can be formed from 7.24 moles of NaOH?
- (c) How many moles of NaOH are required to produce 3.5 moles of hydrogen?
- (d) How many moles of hydrogen can be prepared from 6.9 moles of aluminum?

"Mole to Mole" Stoichiometry Problems

- 1) $\underline{4} \text{ FeCr}_2O_7 + \underline{8} \text{ K}_2CO_3 + \underline{1}O_2 \rightarrow \underline{2} \text{ Fe}_2O_3 + \underline{8} \text{ K}_2CrO_4 + \underline{8} \text{ CO}_2$
- (a) How many moles of FeCr₂O₇ are required to produce 44 moles of CO₂?
- (b) How many moles of O_2 are required to produce 107.9 moles of Fe_2O_3 ?
- (c) If 309 moles of FeCr₂O₇ react, how many moles of O_2 will be consumed?
- 2) Given the reaction $S + O_2 \rightarrow SO_2$
- (a) How many moles of sulfur must be burned to give 0.567 moles of SO₂?
- (b) How many moles of SO_2 can be produced from 67.1 moles of O_2 ?
- 3) 6 NaOH + 2 Al \rightarrow 2 Na₃AlO₃ + 3 H₂
- (a) How many moles of aluminum are required to produce 4 moles of hydrogen?
- (b) How many moles of Na₃AlO₃ can be formed from 7.24 moles of NaOH?
- (c) How many moles of NaOH are required to produce 3.5 moles of hydrogen?
- (d) How many moles of hydrogen can be prepared from 6.9 moles of aluminum?