Worksheet B Equilibrium Calculations

Solve each problem and show all of your work.

1. At equilibrium, a 5.0L flask contains:

0.75 mol of PCl₅

0.50 mol of H₂O 7.50 mol of HCl

5.00 mol of POCl₃

Calculate the Keq for the reaction:

$$PCl_{5(g)} + H_2O_{(g)} \rightleftharpoons 2HCl_{(g)} + POCl_{3(g)}$$

2. Keq= 798 for the reaction:

$$2SO_{2(g)} + O_{2(g)} \rightleftarrows 2SO_{3(g)}$$
.

In a particular mixture at equilibrium, [SO₂]= 4.20 M and [SO₃]=11.0 M. Calculate the equilibrium [O₂] in this mixture.

3. Consider the following equilibrium:

$$2SO_2(g) + O_2(g) \rightleftarrows 2SO_3(g)$$

When a 0.600 moles of SO_2 and 0.600 moles of O_2 are placed into a 1.00 litre container and allowed to reach equilibrium, the equilibrium $[SO_3]$ is to be 0.250M. Calculate the Keq value.

4. Consider the following equilibrium:

$$2 NO_{2(g)}$$

$$Arr N_2O_{4(\sigma)}$$

If 2.00 moles of NO_2 are placed in a 1.00 L flask and allowed to react. At equilibrium 1.80 moles NO_2 are present. Calculate the K_{eq} .

5. 2 SO_{2(g)}

$$O_{2(i)}$$

$$\neq$$
 2 SO_{3(g)}

4.00 moles of SO₂ and 5.00 moles O₂ are placed in a 2.00 L container at 200° C and allowed to reach equilibrium. If the equilibrium concentration of O₂ is 2.00 M, calculate the Keq

6. If the initial $[H_2] = 0.200M$, $[I_2] = 0.200M$ and Keq = 55.6 at 250°C calculate the equilibrium concentrations of all molecules.

$$H_2(g) + I_2(g) \rightleftarrows 2HI(g)$$

7. 1.60 moles CO and 1.60 moles H₂O are placed in a 2.00L container at 690 °C (Keq=10.0).

Calculate all equilibrium concentrations.

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$

8.
$$SO_{3(g)} + NO_{(g)} \Rightarrow NO_{2(g)} + SO_{2(g)}$$

 $K_{eq} = 0.800$ at 100° C. If 4.00 moles of each reactant are placed in a 2.00L container, calculate all equilibrium concentrations at 100° C.

9. Consider the following equilibrium system:

$$2NO_{2(g)} \rightleftharpoons N_2O_4$$

Two sets of equilibrium data are listed for the same temperature.

Container 1

2.00 L

0.12 moles NO₂

0.16 moles N₂O₄

Container 2

5.00 L

0.26 moles NO₂

? moles N₂O₄

Determine the number of moles N₂O₄ in the second container. Get a Keq from the first container and use it for the second container.

Worksheet A Equilibrium Calculations

Solve each problem and show all of your work.

1. $SO_{3(g)}$ + $H_2O_{(g)}$ \Rightarrow $H_2SO_{4(1)}$

At equilibrium $[SO_3] = 0.400M$

 $[H_2O] = 0.480M$

 $[H_2SO_4] = 0.600M$

Calculate the value of the equilibrium constant.

2. At equilibrium at 100°C, a 2.0L flask contains:

0.075 mol of PCl₅

0.050 mol of H₂O

0.750 mol 0f HCl

0.500 mol of POCl₂

Calculate the Keq for the reaction:

 $PCl_5(s) + H_2O(g) \rightleftharpoons 2HCl(g) + POCl_3(g)$

3. Keq= 798 at 25°C for the reaction: $2SO_2(g) + O_2(g) \neq 2SO_3(g)$.

In a particular mixture at equilibrium, [SO₂]= 4.20 M and [SO₃]=11.0M. Calculate the equilibrium [O₂] in this mixture at 25°C.

4. Consider the following equilibrium:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

0.600 moles of SO₂ and 0.600 moles of O₂ are present in a 4.00 L flask at equilibrium at 100° C. If the Keq = 680, calculate the SO₃ concentration at 100° C.

5. Consider the following equilibrium:

 $2 \text{ NO}_{2(g)} \qquad \Rightarrow \qquad N_2 O_{4(g)}$

2.00 moles of NO₂ and 1.60 moles of N₂O₄ are present in a 4.00 L flask at equilibrium at 20°C. Calculate the Keq at 20°C.

 $6. \qquad 2 \text{ SO}_{3(g)} \qquad \ \, \rightleftarrows \qquad 2 \text{ SO}_{2(g)} \qquad \ \, + \qquad O_{2(g)}$

4.00 moles of SO_2 and 5.00 moles O_2 are present in a 2.00 L container at 100° C and are at equilibrium. Calculate the equilibrium concentration of SO_3 and the number of moles SO_3 present if the Keq = 1.47 x 10^{-3} .

7. If at equilibrium $[H_2] = 0.200M$ and $[I_2] = 0.200M$ and $[H_2] =$

 $H_2(g) + I_2(g) \neq 2HI(g)$

8. 1.60 moles CO, 1.60 moles H₂O, 4.00 moles CO₂, 4.00 moles H₂ are found in a 8.00L container at 690°C at equilibrium.

 $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$

Calculate the value of the equilibrium constant.